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A method described in a previous paper [l] is used to construct quadratures of the solutions of the first and second initial-boundary- 
value problems of elasticity theory for a homogeneous anisotropic body of finite dimensions with a piecewise-smooth boundary 

of arbitrary shape. 0 2002 Elsevier Science Ltd. Ail rights reserved. 

1. FOURIER TRANSFORMATION 

We will define the Fourier transformation of the functions used as follows [2] 

f’(k) = j f(~)e-‘“‘~dx 
R” 

For a function to be expressed in terms of its Fourier transformation by the inversion formula [2] 

it must satisfy the conditions [2] 

tf(x,,$‘-..,Xk +tk,-...X,)-ff(X,,X2,....X,)I~Ck(X,rX2,...,Xk-,)itk I” 

~~=const, Oca=s 1, k=l,.,., n 
(1.2) 

‘j- . ..+j&.,+ ,..., xk_,)& . ..&_. <O”9 v’k 
-00 -(D 

Theorem 1. A differentiable function possessing a Fourier transform is represented in terms of its 
Fourier transform by formulae (1.1). 

Proof. A function having at point M a partial derivative with respect to the variable Xk satisfies the 
HGlder condition at the point [3], i.e. a finite constant& exists such that, for any a satisfying the condition 
0 < a c 1, the following inequality is satisfied 

jf($,+ ,..., Xk+$r..., X,)--f(X,rX2,...‘X,)~Ak I$ 1” 

Suppose the region of definition of G of the functions considered is bounded. Having selected the 
functions ck(xI, . . . , Xi) from the condition c&x1, . . . , Xi) = Ak, we obtain 

~..~~c&$x2 t . . . . $-,)dr, . ..dx._, =A, j dr, . ..&._, <=‘, Vk 
-00 Gk-I 
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i.e. the function f(x) at point A4 satisfies conditions (1.2). Hence it follows that finite continuously 
differentiable functions are reproduced by their Fourier transform at all points of their region of 
definition. However, functions that are continuously differentiable in the finite region G and equal to 
zero outside this region are reproduced by their Fourier transform in all cases apart from the boundary 
of the region, where the function and its derivatives are discontinuous. 

2. THE CONVOLUTION OF FUNCTIONS OVER A FINITE REGION 
AND ITS FOURIER TRANSFORMATION 

The convolution of the functionsfr(x) andfi(x) over finite region G will be understood as functionf(x) 
defined in the region G, C R” by the relation 

f(x)= j X(x-Y)_I$(Y)dY (2.1) 
GY 

The functionsfr(x - y) and&(y) are defined in the regions Gri and Gy. The region Gy C R” is finite, 
and G, is defined by the regions G, and Gy and by the expression (x - y). 

Theorem 2. Let the functions f(x), f(x - y) and fi(y) be absolutely integrable in their regions of 
definitions and be connected by relation (2.1). 

Then, for their Fourier transforms, the following relation holds 

f*(k) = f,*&%*(k) 

Proof. We apply a Fourier transformation to function (2.1) 

,I f(x)eik’“dx = J 
i 

j fi (x - y)f2 (y)dy 1 e-‘k’xdx 
I Gx Gy 

(2.2) 

Writing the right-hand side of Eq. (2.2) in the form of an integral over the region G in 2n-dimensional 
space and replacing in this interval the variables zi = xi -yi and yi = yi with a Jacobian equal to unity, 
we reduce it to the-form 

jj fi (z)f2 (y)e-i@+y)‘k&4fy = 
% 

,I fi (z)e-“.‘dz . j ft(y)e-ik’ydy 
L % 

where GLy is the region of the values of the new variables, and G, = GV. 
The theorem follows from relations (2.2) and (2.4). 

3. THE QUADRATURE OF THE SOLUTION OF THE SECOND 
INITIAL-BOUNDARY-VALUE PROBLEM 

We will consider the second initial-boundary-value problem of the dynamic theory of 

Fl 

o,,,,(x,t)+F;(x,t)=pii,(x,r); E/j (X, t> = (U/.i (Xv t) + Uj.,(x, t)) / 2 

o,,,&t> = &,pgEpq(W); ~,m(XS9f)n,(Xs)= qxp’> 
Ui(X,t =O)=Uio(X); rii(X,t=O)=Ujl(X) 

(2.3) 

elasticity 

(3.1) 

where cs,h 9, &p (x, t> and rlmp4 
of elasticity, Fl(x, t r are the components of the stress and strain tensors and the constants 

and U/(X, t) are the components of the mass force and the displacement vector, Uia(x) 
and Uil(x) are the initial distribution of the displacements and their velocities in the body being deformed, 
S is the surface bounding the body and x and t are the coordinates of the points of space and the time. 

We apply a Laplace transformation with respect to time to Eqs (3.1) 
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&(x* P) = r,m& (xv p); 4q 6. PI = (u&9 PI + U.;,n (x, P)) / 2 (3.2) 

c$JXS.P)~&S)= pl’(Xs$) 

We will construct the quadrature of the solution of the initial-boundary-value problem. 
For this, we will use the properties of the fundamental solution R/,(x - y,p) of the equation of problem 

(3.2) according to which any of its particular solutions can be represented in the form [5] 

u;(x? P) = j RI” (x - Y* P)‘y,*(Y. P)dY (3.3) 
W 

We will place the body being deformed, which occupies a volume V, into a volume Vi of larger size 
so that the surface S1 bounding it does not have common points with the surface S. The volume 
comprising the difference between the volumes Vand Vi will be denoted by V,: V2 = Vi - V, the volume 
V, is bounded by the surface SZ, where S2 = Si + S. 

Suppose the function Yi(y, p) in the volume I/ is identical with the function @i(y, p) - the right- 
hand side of dynamic equation (3.2). Then, from relation (3.3) we obtain 

u;(x&=j Mx-Y.P)@,:,(Y,P)&+ 1 R,,t(x-y,p)‘f’;*(y,p)dy (3.4) 
V V2 

In relation (3.4) YA*(y, p) is the mass force specified in the volume V2. We will define it in such a 
way that on the surface S the boundary conditions of problem (3.2) are satisfied. For this, we will construct 
the stresses 

We multiply Eq. (3.5) by ,j(x)e-ik’x and integrate over the surface S. We obtain 

$+Y.P)~ &x,,(rr-~,~) 'K!*(Y,P)~~ ds 
a P 1 I 

(3.5) 

(3.6) 

Using the boundary conditions of problem (3.2) Gauss’s theorem and the theorem on convolution 
over a finite region, with the notation 

M,(k. P) = P;*(k. P) - I-: (k, P) 

N,(kv P) =-3r,,p(ik,R~,a(k,~)+i~jR~,~(~~)- Rl&(k,p)- R,.,,,aj(k,p)) 

Ij**(k,p) = j ~*(~~,p)e-~~%S 
S 

r:(k*p)=irqcxpj nj(Xs)e-ik’xs 
s 

$R~(x-y,p)+~R~(x-y,p) cP~(y,p)dy & 
B I I 
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we reduce system of equations (3.6) to the form 

M, (k, P) = N,,, (k. pP’;**(k, P) (3.7) 

System of linear algebraic equations (3.7) is an integral form of boundary-value problem (3.2). Since 
boundary-value problem (3.2) possesses a unique solution [4], the matrix of system of equations (3.7) 
Nln(k, p) has the inverse matrix N,;‘(k, p), which can be constructed by the well-known procedure. 
Therefore 

‘L’;**(0) = &‘(k,p)M,(k.p) (3.8) 

Using Eqs (3.8) and (3.4), we construct the solution of problem (3.1) 

&(x - Y9 PW’,(Y* PMY + 

+I Ri,,(x-YY,P 
’ 1 eW 

(2n)3 R3 

N;; (k, pW,(k pMk,dk,dk, & dp 

“2 II (3.9) 

We will prove that quadrature (3.9) is the solution of initial-boundary-value problem (3.1). 

Theorem 3. Quadrature (3.9) satisfies the equations of motion of initial-boundary-value problem (3.1). 

Proof. For the proof, we will write Eq. (3.9) in the form 

u+i- 

j eP’u;(x, p)dp 
a-i- 

or 

u~(xvP)= 1 j R~j(x-Y,t-~>~)(y,r)dyd~ 
VI 0 

(3.10) 

(3.11) 

R~j(.-y.t-r)=~a~~~p’t-“R,j(X-y,p)dp. 
a-i- 

C.+i- 

j eP’QPy(y, p)dp 
a-i- 

Then, for the second derivative ii,(x, t), by the properties of the Laplace transformation, we obtain 

ii,(x,t)=& 
a+i- 

j ePt[~~(x.p)-pulo(x)-u,,(x)ldp 
n--inn 

(3.12) 

Substituting expressions (3.11) and (3.12) into the equations of motion of initial-boundary-value 
problem (3.1), we obtain 

eP’b2,,,Rlj(x - y, P) + pp2R0 tx - y, p)l@~(y, p)dp dy + 

+&a]~ep’@~(x,p)dp=O 
cl I_ 

(3.13) 

Taking account of the fact that in relation (3.13) the expression in the square brackets is the kernel 
of the identity integral transformation, we obtain a true equality. 

Theorem 4. Quadrature (3.9) satisfies the initial conditions of problem (3.1). 

Proof. The proof is identical with the proof of Theorem 2 in [l]. 
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Theorem 5. Quadrature (3.9) satisfies the boundary conditions of initial boundary-value problem (3.1). 

Proof. The proof follows from the properties of the Laplace transformation and from the construction 
of the function YA’(y, p), given in the present paper. 

4. QUADRATURE OF THE SOLUTION OF 
THE FIRST INITIAL-BOUNDARY-VALUE PROBLEM 

We will consider the first initial-boundary-value problem of dynamic elasticity theory. It differs from 
problem (3.1) by the replacement of the first boundary condition with the condition 

u;(x,,t) = u,a(xs,r) 

This boundary-value problem differs from the problem examined earlier [l] only in the fact that here 
the elastic body is considered to be anisotropic. Therefore, to solve the problem, it is sufficient to use, 
instead of the Kupradze matrix, Green’s tensor of the anisotropic problem. Then the quadrature of 
the solution of the problem takes the form 

U,(x~r)=&~jl” 
i 

j ~~(X-Y,P)[~~tY,P)-P”j,(Y)-uj~(Y)ldY+ 
a-i- V 

+I &j(x-Y.P) 

i 

& j eik”(Resj,(kp )uzo:o(k p> - Resj,(k PI@: (k P))a dY@ 

5 R’ 11 
Repeating the arguments given earlier [l], we can prove that this solution satisfies the system of initial 

differential equations, and also the boundary and initial conditions of the problem. 

1. 

2. 
3. 
4. 
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