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QUADRATURES OF THE SOLUTIONS OF
THE FIRST AND SECOND INITIAL-BOUNDARY-VALUE
PROBLEMS OF ELASTICITY THEORY FOR
AN ANISOTROPIC MATERIALY}
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A method described in a previous paper [1] is used to construct quadratures of the solutions of the first and second initial-boundary-
value problems of elasticity theory for a homogeneous anisotropic body of finite dimensions with a piecewise-smooth boundary
of arbitrary shape. © 2002 Elsevier Science Ltd. All rights reserved.

1. FOURIER TRANSFORMATION

We will define the Fourier transformation of the functions used as follows [2]

fr&= | fxe ™ dx
Rn

For a function to be expressed in terms of its Fourier transformation by the inversion formuia [2]
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it must satisfy the conditions [2]
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Theorem 1. A differentiable function possessing a Fourier transform is represented in terms of its
Fourier transform by formulae (1.1).

Proof. A function having at point M a partial derivative with respect to the variable X satisfies the
Holder condition at the point [3], i.e. a finite constant A exists such that, for any o satisfying the condition
0 < a = 1, the following inequality is satisfied

L fO X X+ by X, ) = (X, X, X, ES AL L1 I

Suppose the region of definition of G of the functions considered is bounded. Having selected the
functions ¢y (xy, ..., x;) from the condition c,(x;, ..., x;) = Ay, we obtain
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i.e. the function f(x) at point M satisfies conditions (1.2). Hence it follows that finite continuously
differentiable functions are reproduced by their Fourier transform at all points of their region of
definition. However, functions that are continuously differentiable in the finite region G and equal to
zero outside this region are reproduced by their Fourier transform in all cases apart from the boundary
of the region, where the function and its derivatives are discontinuous.

2. THE CONVOLUTION OF FUNCTIONS OVER A FINITE REGION
AND ITS FOURIER TRANSFORMATION

The convolution of the functions f1(x) and f,(x) over finite region G will be understood as function f(x)
defined in the region G, C R" by the relation

fx) = | f(x=y)fi(y)dy 2.1)

Gy

The functions fi(x — y) and f5(y) are defined in the regions G,, and G,. The region G, C R" s finite,
and G, is defined by the regions G, and G, and by the expression (x - y).

Theorem 2. Let the functions f(x), f(x — y) and f,(y) be absolutely integrable in their regions of
definitions and be connected by relation (2.1).
Then, for their Fourier transforms, the following relation holds

&)= fkf k)

Proof. We apply a Fourier transformation to function (2.1)

[ fxe™*dx= | {j f,(x—y)fz(y)dy}e"’]""dx 2.2)

G, G, |Gy

Writing the right-hand side of Eq. (2.2) in the form of an integral over the region G in 2n-dimensional
space and replacing in this interval the variables z; = x; —y; and y; = y; with a Jacobian equal to unity,
we reduce it to the form

[ @AW ™ " dzdy = | fi(z)e™dz- | fo(y)e *Vdy (23)
G G

G y Z y

where G,, is the region of the values of the new variables, and G, = G,,.
The theorem follows from relations (2.2) and (2.4).

3. THE QUADRATURE OF THE SOLUTION OF THE SECOND
INITIAL-BOUNDARY-VALUE PROBLEM

We will consider the second initial-boundary-value problem of the dynamic theory of elasticity
[4]

Otmm (K1) + Fi(X,1) = Pify(X,1):  €5(%,8) = (uy ; (X,1)+ 1t (X, 1))/ 2

O (X, 1) = T € (X,1); - Oy (X5, D (X5) = Fi(X5,1) (3.1)

u(x,t =0) = u;p(x);  w;(x,1=0)=u;(x)

where 0;,(x, t), €,,(x, t) and I';,,,, are the components of the stress and strain tensors and the constants

of elasticity, F(x, t) and u,(x, t) are the components of the mass force and the displacement vector, u;o(x)

and u;;(x) are the initial distribution of the displacements and their velocities in the body being deformed,

S is the surface bounding the body and x and ¢ are the coordinates of the points of space and the time.
We apply a Laplace transformation with respect to time to Eqs (3.1)
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Ol (X, )+ PP7u} (X, p) = = F' (X, p) + p(ptt1o(X) + 1y (X))

Ol (% ) = Ding€0g (6 DY €30 (X, p) = (45 o (X, p) +uty (X, P))/ 2 3.2)
O (Xss P (X5) = B (X5, )

We will construct the quadrature of the solution of the initial-boundary-value problem.
For this, we will use the properties of the fundamental solution R;,(x -y, p) of the equation of problem
(3.2), according to which any of its particular solutions can be represented in the form [5]

u (x,p)= | R (x—y.p)¥;(y. p)dy (3.3)
w

We will place the body being deformed, which occupies a volume V, into a volume ¥V of larger size
so that the surface §; bounding it does not have common points with the surface S. The volume
comprlslng the difference between the volumes V and V; will be denoted by V5: V; = V| — V; the volume
V, is bounded by the surface S,, where §, = §; + §.

Suppose the function ¥, (y, p) in the volume ¥ is identical with the function ®;(y, p) - the right-
hand side of dynamic equation (3.2). Then, from relation (3.3) we obtain

Uy (%, p) = j R (x =¥, p)®,(y.p)dy+ | R, (x—y, p)¥,’ (3, p)dy (34
v

In relation (3.4), ¥1'(y, p) is the mass force specified in the volume V5. We will define it in such a
way that on the surface S the boundary conditions of problem (3.2) are satisfied. For this, we will construct
the stresses

. d d .
Gu(x’p).: Uaﬂ‘[ [ RB"(X y,P)+a—Run(x‘y,P)}'*(bn(y,P)dy*'
*B

aaf[ Ry (x— y,p)+—~Ra,.(x y,p)J‘P"(y,p)dy (3.5)

We multiply Eq. (3.5) by nj(x)e"ik"‘ and integrate over the surface S. We obtain

{ Ga(xs.p)nj(xs)e"'k'x3d5=I“i'(k P +— Fuﬂj nj(xgs)e” &oxs o

a a 1*
"{ V{ { o, Ren (x y,p)+é—x;Rw.(x -Y, p)]‘i’,, (y,p)dy]ds (3.6)

Using the boundary conditions of problem (3.2), Gauss’s theorem and the theorem on convolution
over a finite region, with the notation

M, (k, p) = B**(k, p)~ T} (k, p)
1
Nin (K, p) = = =Ty ik R, o (K, p)+ik; Re, g (K, p)= R o;(K, p) = Roy g (. p))

F*(kp)=[ B (x5, ple™*sds
s

2
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s
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we reduce system of equations (3.6) to the form

J¥x

M, (k, p) = N}, (k, p)'¥, " (k, p) (3.7)

System of linear algebraic equations (3.7) is an integral form of boundary-value problem 1(3.2). Since

boundary-value problem 3.2) possesses a unique solution [4], the matrix of system of equations (3.7)

Nj(k, p) has the inverse matrix N,;'(k, p), which can be constructed by the well-known procedure.
Therefore

#x _ -l
“n (kvp)_Nni (kyP)Mi(--,P) (38)

Using Egs (3.8) and (3.4), we construct the solution of problem (3.1)

1 o+ oo R
uxt)=— | e"'! | R, (x—y,p)®,(y. p)dy +
M v
+J R, (x-Yy, p)[(2 ) N (k, pYM (K, p)dk,dk,dk, dejdp (3.9)

We will prove that quadrature (3.9) is the solution of initial-boundary-value problem (3.1).

Theorem 3. Quadrature (3.9) satisfies the equations of motion of initiai-boundary-vaiue probiem (3.1).

Proof. For the proof, we will write Eq. (3.9) in the form

] O+ (oo
u(x,1)=-— ( ePul (x, p)dp (3.1
2niai,-m i Lot o 12.1U)
or
'
wx,p)=[ [ Rj(x=y,t—0)®;(y1)dydt (3.11)
. g ) R
R, (x~-y,t—-T)=— ePUUR (x-y.p)dp, Dy, T)=— e ®'(y, p)d
Ij( y ) 2n.a:,i°° l/( y P) D J(y ) 21tia_J,.N J (y p) p

Then, for the second derivative #i(x, t), by the properties of the Laplace transformation, we obtain

1 Q+ioo
ii,(x,t):-z—;; | e”'luy (x, p)— puy(x) =) (x))dp (3.12)

- foo

Substituting expressions (3.11) and (3.12) into the equations of motion of initial-boundary-value
problem (3.1), we obtain

/ !—_— | e»r[(L)m,R,j(x_y,p)+ppzk,j(x_y,p)]¢y(y,p)dp}dy+

v (4T g i

A PRI Sy ) PRS- £ |

Taking account of the fact that in relation (3.13) the
of the identity integral transformation, we obtain a true equallty

—_

Theorem 4. Quadrature (3.9) satisfies the initial conditions of problem (3.1).
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Theorem 5. Quadrature (3.9) satisfies the boundary conditions of initial boundary-value problem (3.1).

Proof. The proof follows from the properties of the Laplace transformation and from the construction
of the function ¥}*(y, p), given in the present paper.

4. QUADRATURE OF THE SOLUTION OF
THE FIRST INITIAL-BOUNDARY-VALUE PROBLEM

We will consider the first initial-boundary-value problem of dynamic elasticity theory. It differs from
problem (3.1) by the replacement of the first boundary condition with the condition

ui(xgs,t) = upp(Xs,1)

This boundary-value problem differs from the problem examined earlier [1] only in the fact that here
the elastic body is considered to be anisotropic. Therefore, to solve the problem, it is sufficient to use,
instead of the Kupradze matrix, Green’s tensor of the anisotropic problem. Then the quadrature of
the solution of the problem takes the form

u,(x,t):iit—, i ep'{ | Ry(x=y. pYUF; (3. P)~ pujo(y) — ujy (¥)ldy +

a-—-je 14

1 ikex L >
+f R;;(x—y.m[(m3 [ €% (Res (k. o (K, p) = Res  (k, PO 1 (K, p))lk |y dydp
v RS

Repeating the arguments given earlier [1], we can prove that this solution satisfies the system of initial
differential equations, and also the boundary and initial conditions of the problem.
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